
On Reconnaissance with IPv6:
A Pattern-Based Scanning Approach

Johanna Ullrich, Peter Kieseberg, Katharina Krombholz, Edgar Weippl
SBA Research
Vienna, Austria

Email: (firstletterfirstname)(lastname)@sba-research.org

Abstract—Today’s capability of fast Internet-wide scanning
allows insights into the Internet ecosystem; but the on-going
transition to the new Internet Protocol version 6 (IPv6) makes
the approach of probing all possible addresses infeasible, even
at current speeds of more than a million probes per second. As
a consequence, the exploitation of frequent patterns has been
proposed to reduce the search space. Current patterns are man-
ually crafted and based on educated guesses of administrators.
At the time of writing, their adequacy has not yet been evaluated.
In this paper, we assess the idea of pattern-based scanning for
the first time, and use an experimental set-up in combination
with three real-world data sets. In addition, we developed a
pattern-based algorithm that automatically discovers patterns
in a sample and generates addresses for scanning based on its
findings. Our experimental results confirm that pattern-based
scanning is a promising approach for IPv6 reconnaissance, but
also that currently known patterns are of limited benefit and
are outperformed by our new algorithm. Our algorithm not
only discovers more addresses, but also finds implicit patterns.
Furthermore, it is more adaptable to future changes in IPv6
addressing and harder to mitigate than approaches with manually
crafted patterns.

I. INTRODUCTION

Internet-wide scanning experienced a tremendous boom in
recent years; and today, scanning the entire Internet takes not
more than an hour to complete [1], [2]. This evolution has
provided a number of insights into the Internet ecosystem:
Heninger et al. investigated the cryptographic protocol TLS
and SSH, and found hosts using the same keys as others [3].
Durumeric et al. studied the HTTPS certificate system and
showed that the majority of trusted certificates were controlled
by three organizations [4]. Rossow scanned for nodes which
were vulnerable for reflection attacks and found millions of
them [5]. Even further, scanning plays a vital role in vulnera-
bility mitigation: By handing scanning results over to CERTs,
Kührer et al. measured a drop of 92 % of hosts vulnerable to
NTP reflection attacks [6]. Durumeric et al. measured a 47 %
decrease of servers vulnerable to Heartbleed after reporting
[7]. Apart from Internet-wide scanning, scanning a certain
subnet has always been a part of penetration testing to discover
potential victims.

The presented approaches have in common that they probe
every address within a certain range. However, this method
and an on-going development collide with each other: the re-
placement of the Internet’s main protocol IPv4 by IPv6 [8] due
to address scarcity. The new version has an increased address
range making it impossible to scan even the smallest subnet
in the common way [9]. As a consequence, practitioners and

researchers looked out for alternative ways of reconnaissance1,
and the resulting development can be best described in two
steps that followed different premisses:

(1) If one cannot probe all addresses, one has to use other
sources to gain valid addresses. In a first step, researchers
and practitioners accessed systems that stored addresses for
their intended application. Thereupon are public archives,
centralized application servers or various ways of leveraging
the Domain Name Systems [10], [11]. The drawback of this
approach is that nodes that are not participating or not listed
are never discovered.

(2) If one cannot probe all addresses, one has to in-
clude more information to synthesize promising addresses.
In a second step, researchers and practitioners targeted to
reduction of address space through address patterns. Thereby,
all addresses containing a certain pattern are probed. Known
patterns arise from standardization (e. g. Modified EUI format)
or striking structures in addresses (e. g. low-byte addresses)
[10], [11]. This approach also has its drawbacks. The benefit of
patterns that are inferred from standards is unknown because
these standards are not without alternatives and other IPv6
addressing schemes exist. Striking patterns are typically crafted
manually, based on educated guesses and might not be as
wide-spread as they might seem to humans. To the best of
our knowledge, no evaluation of pattern-based approaches is
available.

In this paper, we overcome this gap and assess pattern-
based scanning in IPv6 in an experimental set-up. We eval-
uate not only currently known patterns with respect to their
applicability to reconnaissance, but also develop a pattern-
based scanning algorithm. This algorithm automatically ex-
tracts patterns from a small training set in a first step, and
generates addresses based on these findings for later scanning.
Our results imply that pattern-based scanning is a feasible
approach for the discovery of IPv6 hosts, but known patterns
are of limited benefit. They are outperformed by our novel
algorithm. Our algorithm’s results vary with respect to certain
parameters, however, we are able to pre-estimate the quality
of our results.

We consider our approach worthwhile for the following
reasons: (1) Our evaluation bases on three data sets of real-
world addresses. The data sets include addresses from a large
number of organisations and are considered to be representa-
tive for address assignment habits of administrators. (2) The

1In this paper, we use the term reconnaissance for the discovery of unknown
hosts in a network. The term (network) scanning is used for the discovery of
unknown host through sending requests in await for responses. According to
this definitions, scanning is a means of reconnaissance.

algorithm extracts patterns automatically from a training set
and generates addresses based on these findings. As it is likely
that addressing habits might change in the future due to new
technologies and standardizations, the algorithm is adaptable
to future changes. (3) No response is ambiguous in real-world
scanning: There might be no host listening to a certain address,
or alternatively there might be no response to the requested
service (port/protocol). With our experimental set-up, we are
able to eliminate the second, non-IPv6 specific alternative.
This way, we are able to isolate the impact of IPv6 address
generation from non-IPv6 factors.

The remainder of the paper is structured as follows: Section
II introduces related work considering aspects of reconnais-
sance in both protocol versions IPv4 and IPv6. Section III
presents the considered scenario for scanning, explains our
novel pattern-based algorithm for scanning and current, man-
ually crafted patterns. In Section IV, we cover experiments to
evaluate pattern-based scanning. The results are discussed in
Section V, Section VI concludes this work.

II. RELATED WORK
Our research is based on two foundations: First, we dis-

cuss networking scanning with the predecessor version IPv4
and highlight why approaches of more sophisticated address
generation serve a different goal than increasing the number of
discovered hosts. Second, we highlight ways of reconnaissance
with IPv6, show the advantages of scanning with version 6 and
further highlight current scanning approaches.
A. Scanning with IPv4

The de-facto standard IPv4 scanner is the open-source tool
nmap [12]. This and similar tools are crafted for scanning
small address ranges. Due to maintaining a connection-wise
state they are not capable of sending high numbers of packets.
Internet-wide scanning with a tool like nmap requires a high
number of nodes, lots of time and/or money [3]. Their coun-
terparts are specialized scanning tools that are optimized for
high traffic rates: IRL scanner was the first in 2010 [13] and
covered the whole Internet in 24 hours using a single machine.
As this tool had never been released to the community, the
issue was brought up again in 2013 and two new tools were
presented: ZMap [2] and masscan [1]. ZMap is a modular,
open-source tool that predominates in academia and enabled
a variety of insights into the global Internet ecosystem, e. g.,
[3], [4]. masscan is also open-source and claims to be faster.
Being both released to the public, both tools were found to be
used in the wild [14].

With respect to this paper, the tools’ address generation
is of interest: nmap iterates through all addresses of a range
in ascending order and starts with the lowest. This method
imposes the drawback of possibly overloading a destination
because close addresses are likely to be also topologically
close. Internet-wide scanners thus aim to balance the traffic
by scrambling the address order. IRL scanner uses a reversed
linear congruential generator permutation, ZMap iterates over a
multiplicative group of integers modulo a prime slightly larger
than 232, and masscan encrypts an incrementally increased
index by means of a hash function. Although the latters’
address generation is more sophisticated, they still target to
probe every single address in a range.
B. Reconnaissance with IPv6

Initially, the focus drifted to ways of reconnaissance be-
yond scanning [10], [9] due to the myth of IPv6’s unscannabil-

ity. On the one hand, sources that store addresses could
be used: (1) Querying the DNS for known domains reveals
addresses, and unhandy IPv6 addresses might be more likely
listed than their IPv4 counterparts. (2) Different answers of cer-
tain DNS server implementations allowed the reduction of the
address space because the server’s response differs for empty
non-terminal from other errors. (3) A variety of other services
might also be used, e. g., Node Information Queries, log files
or centralized application servers. On the other hand, (4) some
IPv6 implementations responded to requests to multicast ad-
dresses with their unicast address and allowed reconnaissance
for local adversaries. On the bottom line, no approach seemed
more promising than scanning: The attacker actively invokes
a response and is thus independent of the victim’s networking
customs. Scanning is locally as well as globally applicable
and can base on a variety of protocols. Scanning exploits the
protocols’ intended functionality that cannot be fully prevented
without an impact on regular networking. In return, one has
to deal with the fact that not all addresses can be probed.

An early analysis of IPv6 addresses provided the insight
that they include extra expressiveness due to their increased
length [15]. Reversing this expressiveness is an approach to
create actually used IPv6 addresses. Gont et Chown [11]
searched through addressing standards for exploitable patterns
for address reduction and also proposed patterns for manu-
ally crafted addresses. Gont implemented these patterns in
the scanning tool scan6 [16]. The idea behind pattern-based
scanning is the reduction of search space as a consequence of
the fact that not all addresses in IPv6 can be probed. Thus,
one aims to probe more likely addresses prior less likely
ones as opposed to the IPv4 approaches that use a changed
address order solely to prevent destination overloading. These
patterns are manually crafted based on educated guesses, and
have never been evaluated with respect to their applicability.
Further, manual crafting needs manual updates in case the
underlying addressing schemes change, or do not go beyond
obvious patterns.

This paper aims to overcome these issues: It assesses
whether pattern-based approaches are feasible in general, eval-
uates the current approaches in detail and compares them to our
novel pattern-based algorithm. This algorithm automatically
discovers addresses, and generates new addresses for scanning
based on these findings.

III.SCANNING DESIGN

In this section, we present our considered scenario for
scanning, explain the recursive design of our novel pattern-
based algorithm and finally describe the manually crafted
patterns from the literature in detail.
A. Considered Attack Scenario

We consider hosts that reside in the same IPv6 network
prefix, and an adversary that resides at an arbitrary location on
the Internet without local access to the targeted network. The
adversary aims to discover as many hosts as possible. He/She
is aware of manually crafted address patterns and further has a
representative sample of addresses in this prefix2. This scenario
is typical for penetration tests or adversaries targeting a certain

2An IPv6 address consists of a 64-bit network prefix, and a 64-bit interface
identifier. Technically speaking, the adversary aims to discover interface
identifiers as the prefix is known, but we stick to the term addresses for
comprehensibility.

organization unit. Internet-wide scanning consists of a multi-
tude of such scenarios with different prefixes. The assumptions
are realistic insofar as manually crafted patterns are publicly
available ([16], [11]). The address sample might be gained
from the organization unit itself, e. g., insider information, but
might also be derived from a similarly organized network.

B. Recursive Algorithm

This dual-purpose algorithm automatically discovers pat-
terns in a training set of addresses, and generates addresses
based on these patterns for scanning. The algorithm for pattern
discovery is recursive and refines a given pattern through the
determination of an additional bit per recursion. This additional
bit is chosen in a way that the refined pattern covers the
highest number of addresses among all pattern candidates.
With every recursion the number of determined bits increases
by one, thus decreasing the number of undetermined bits by
one. If the number of undetermined bits falls below a given
threshold, address generation is started. Then, all addresses that
contain the current pattern are generated in ascending order. In
addition to the following textual representation, our algorithm
is depicted in Algorithms 1 and 2 in Appendix A.

Refined Pattern: The refined pattern covers the highest num-
ber of addresses among all candidate patterns. To find this
pattern, rules are created and their key performance indicator
support is calculated. In detail, for every undetermined bit bu
two rules are generated: Rule 1: The address is appropriate
to the current pattern. ⇒ The undetermined bit bu is zero.
and Rule 2: The address is appropriate to the current pattern.
⇒ The undetermined bit bu is one. The support of a rule is
the ratio of the number of addresses fulfilling the rule to the
number of addresses fulfilling the current pattern. Applying the
rule with the highest support to the current pattern provides
the refined pattern that is provided to the next recursion.

Inverse Rule and Pattern: The recursion is not only recalled
with the refined pattern, but also with its inverse pattern. In
case the best rule of a recursion is The address is appropriate
to the current pattern ⇒ The undetermined bit bv is zero.
Its inverse rule is The address is appropriate to the current
pattern. ⇒ The undetermined bit bv is one. Applying the
inverse rule to the current pattern leads to the inverse pattern,
and another recursion is called with this inverse pattern. This
guarantees that all patterns are included in the manner of a
binary search tree and more likely addresses are probed prior
less likely.

Initialization: A pattern with at least one determined bit is
necessary for initialization. The algorithm has to be started
2number of start bits times to fully cover the search space.

Stop Condition: If the number of undetermined bits falls
below a certain threshold, the recursive pattern generation is
stopped. Based on the current pattern, all appropriate addresses
are iterated in ascending order for scanning. The number of
generated addresses is 2threshold−1.

The start bits and the threshold are parameters of our
pattern-based algorithm. Start bits should be chosen in a way
that does not impede pattern finding. The threshold of the
stop condition defines the transition from pattern discovery to
address generation, and thus defines the degree of exploitation
of known combinations in addresses versus the flexibility to
find slightly different addresses.

C. Manual Patterns
In this section we discuss manually crafted patterns as

defined in [16]. The major difference between this work and
our approach is that in [16] the list of scanned patterns bases
on experience instead of sample analysis and is fixed. This
means that an upgrade has to be done manually by releasing
a new version of the scanner. With the approach outlined in
this work, trends in the selection of address deployment will
be incorporated into the reconnaissance. The manually crafted
patterns are as follows.
Low-byte: It was detected that many administrators simply
select low numbers for the two low bytes of addresses,
so-called low-byte addresses. The scanned address range is
2001:db8::0-100:0-1500, i. e., 1.381.889 addresses in total.
Ports: Several different ports are defined as standard ports
for services. Administrators use simple schemes to map these
service ports into the last bytes of an IPv6 address. The port
pattern uses 23 different port numbers of popular services to
create four address ranges per port. By the example of FTP
(port 21), these ranges are: 2001:db8::0-5:21, 2001:db8::21:0-
5, 2001:db8::0-5:15 and 2001:db8::15:0-53.
OUIs: IPv6 Interface Identifiers in Modified EUI format con-
tain the three byte Organizationally Unique Identifier (OUI),
a fixed pattern of two bytes and another three free bytes. This
pattern iterates through all 224 addresses of a certain OUI,
e. g., 2001:db8::1234:56ff:fe(00-ff):0-ffff with the showcase
OUI 1234:56. [16] further mentions a vendor pattern consisting
of all OUIs of a certain vendor, and a virtual machines
pattern taking OUIs usually used by virtualization software
like VMWare and vbox. We consider them as a particular case
of the OUI pattern.

IV.EXPERIMENTS

This section describes our experimental set-up and included
data sets. Further, our gained results are provided and it is
shown that our algorithm’s performance can be predicted to a
certain degree.
A. Experimental Setup

Our set-up consists of two Python scripts. One implements
our recursive pattern-based algorithm and generates an address
list. This address list represents the addresses that are scanned.
A data set represents the addresses that are used by hosts in
this network. The second script compares the generated list
with this data set to evaluate the number of actually discovered
hosts. We decided for this approach instead of scanning real-
world networks in order to gain non-ambiguous results: No
response in real-world scanning might have various reasons,
like no host listening to this address or that the requested
service is not supported. Our set-up allows to isolate IPv6
address generation from non-IPv6 factors.

For every run, two data sets are required: Our pattern-based
algorithm requires a training data set to find patterns, while
the evaluation algorithms requires a test data set to evaluate
the number of successfully discovered hosts. Both data sets
are created from our entire data (see below) by a 10-folds
cross validation. Typically, the entire data set is split in ten
portions of equal size, nine portions form the training data
set, one portion the test data set [17]. We believe that using
the smaller data set to find patterns, and discover addresses

3 21 in decimal is 15 in hexadecimal.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 200000 400000 600000 800000 1000000

N
u
m

b
e
r

o
f

fo
u
n
d

 a
d

d
re

ss
e
s

Number of tested addresses

20 bit
18 bit
16 bit
14 bit
12 bit
10 bit

8 bit
6 bit
4 bit

low byte
brute

CI

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 8 16 24 32 40 48 56 64

N
u
m

b
e
r

o
f

fo
u
n
d

 a
d

d
re

ss
e
s

Number of start bit

CI

Brute forcing

Fig. 1. Routers: Number of found addresses in dependence of probed
addresses (top) and start bit (bottom). Comparison of our pattern-based
algorithm, the low-byte pattern and brute-forcing.

in a larger data set represents the process of reconnaissance
more adequately. Thus, we took the smaller set for training,
the large for reconnaissance. For the creation of all subsets,
we used WEKA’s stratified remove folds algorithm [18] and
the addresses’ LSB as classifier. The manually crafted patterns
were evaluated by the same evaluation algorithm and on the
same test data sets for comparability. The list of addresses
were extracted from scan6 by means of tcpdump, and another
Python script extracting the addresses. In total, we ran ten runs
per data set.

For our experiments, we were able to access three real-
world data sets that represent a different node type each. Client
addresses were gained from logs of RIPE’s IPv6-enabled
homepage www.ripe.net. In total we had 167 347 addresses.
Requesting AAAA records of the Alexa Top Million revealed
16 644 Server addresses. Tracerouting the path to these servers
revealed 12 982 distinct Router addresses. Both data sets were
collected from a Rackspace cloud instance in the Dallas region.
These data sets include addresses from a high number of
organisations and are thus assumed to be representative for
address assignment habits of administrators.

B. Results
Figures 1, 2 and 3 provide the results for the three host

types routers, servers and clients. The upper sub-figure respec-
tively shows the number of found addresses in dependence of
the number of probed addresses for different thresholds. The
results of our recursive algorithm are contrasted with the results
of the low-byte pattern and brute-forcing4. The lower sub-
figure shows the number of addresses found by the recursive
algorithm in dependence of the start bit with a threshold of 18.
The graphs average ten runs, and also provide the confidence
interval (CI).
Routers: Our recursive algorithm outperforms brute-forcing
and the low-byte pattern. The higher the threshold, the higher
the number of found addresses. With a threshold of 20, the

4In this paper, brute-forcing is considered as probing addresses in ascending
order and starting with the lowest.

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 200000 400000 600000 800000 1000000

N
u
m

b
e
r

o
f

fo
u
n
d

 a
d

d
re

ss
e
s

Number of tested addresses

20 bit
18 bit
16 bit
14 bit
12 bit
10 bit

8 bit
6 bit
4 bit

low byte
brute

CI

 0

 100

 200

 300

 400

 500

 600

 700

0 8 16 24 32 40 48 56 64

N
u
m

b
e
r

o
f

fo
u
n
d

 a
d

d
re

ss
e
s

Number of start bit

CI

Brute forcing

Fig. 2. Servers: Number of found addresses in dependence of probed
addresses (top) and start bit (bottom). Comparison of our pattern-based
algorithm, the low-byte pattern and brute-forcing.

algorithm reveals plus 442 addresses in comparison to brute-
forcing, and plus 353 in comparison to the low-byte pattern. A
threshold of 4 still reveals plus 118 respectively 29 addresses.
The low-byte pattern discovers 88 addresses more than brute-
forcing. Considering initialization, bit 0 to 46 and bit 48 to 53
result in more than 800 discovered addresses. The maximum
is 962 addresses (bit 45). Starting with bit 56 to 63 results in
less than 620 addresses, the minimum is 395 addresses (bit
62).
Servers: Higher thresholds perform better, and our recursive
algorithm outperforms brute-forcing. However, low thresholds
(4, 6 and 8 bits) are below brute-forcing in the beginning,
but are outstripping brute-forcing within the first third of
probes. With a threshold of 20, the algorithm discovers plus
217 addresses in comparison to brute-forcing, and plus 72
in comparison to the low-byte pattern. The low-byte pattern
reveals 145 more addresses than brute-forcing, and experiences
a steep increase not only in the beginning, but also at about
500.000 probes. Considering initialization, the maximum is
593 addresses starting with bit 53. Its neighbor bits 52 and 54
however result in only 452 and 294 addresses, but bit 16 to
26 all result in more than 500 addresses. Results for bit 54 to
63 are below brute-forcing.
Clients: The recursive algorithm with thresholds above 16
reveals more addresses than brute-forcing and the low-byte
pattern. With a threshold of 20, the recursive algorithm reveals
plus 387 addresses in comparison to brute-forcing, and plus
417 addresses in comparison to the low-byte pattern. Notice-
ably, low-byte performs slightly worse than brute-forcing and
reveals 31 addresses less. Considering initialization, only bit 17
and 19 to 21 provide more than 1000 addresses. Starting with
bit 1, 14, 15 and 26 to 63 performs worse than brute-forcing.
Manual Patterns: The port pattern includes only 552 probes.
Table I shows that these probes reveal 44 client, 53 router
and 36 server addresses. The table compares these results to
the number of discovered addresses in the first 552 probes of
the low-byte pattern, brute-forcing and our recursive algorithm
with a threshold of 18. All of them reveal roughly four-times
the addresses of scanning with the port pattern, or even more.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 200000 400000 600000 800000 1000000

N
u
m

b
e
r

o
f

fo
u
n
d

 a
d

d
re

ss
e
s

Number of tested addresses

20 bit
18 bit
16 bit
14 bit
12 bit
10 bit

8 bit
6 bit
4 bit

low byte
brute

CI

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 8 16 24 32 40 48 56 64

N
u
m

b
e
r

o
f

fo
u
n
d

 a
d

d
re

ss
e
s

Number of start bit

CI

Brute forcing

Fig. 3. Clients: Number of found addresses in dependence of probed
addresses (top) and start bit (bottom). Comparison of our pattern-based
algorithm, the low-byte pattern and brute-forcing.

Routers Servers Clients

Port Pattern 52.6 (CI 1.0) 35.5 (CI 0.9) 43.8 (CI 2.0)

Low-Byte Pattern 204.1 (CI 0.8) 192.8 (CI 1.0) 209.6 (CI 0.8)

Brute-Forcing 203.1 (CI 0.8) 191.8 (CI 1.0) 208.6 (CI 0.8)

Our Algorithm 407.3 (CI 1.7) 274.3 (CI 1.7) 386.1 (CI 81)

TABLE I. PORT PATTERN IN COMPARISON TO ALTERNATIVES

Routers Servers Clients

Top 1 8.1 (CI 0.5) 163.8 (CI 2.7) 707.4 (CI 6.0)

Top 2 6.3 (CI 0.5) 41.4 (CI 0.9) 311.0 (CI 3.8)

Top 3 4.7 (CI 0.3) 18.0 (CI 0.7) 147.4 (CI 2.5)

Top 4 4.5 (CI 0.4) 13.5 (CI 0.8) 140.9 (CI 2.4)

TABLE II. OUI PATTERN: BEST RESULTS

Table II shows the four most successful scanning attempts
of the OUI pattern per host group. Every attempt requires 224

probes. For routers and servers a low number of addresses
is discovered: The most-frequent OUI reveals only 8 router
addresses and 164 server addresses. The most-frequent OUI in
clients reveals 707 addresses, but remains a singular result. The
second-frequent reveals 311 address, and the remaining below
150 addresses. These are all rather low results considering the
roughly 16 million probes per OUI.
C. Parameter Prognosis

An adversary using our pattern-based algorithm for host
discovery likes to know in advance whether a certain start bit
is a good choice because the algorithm’s results are heavily
dependent on the initialization. We claim that the results are
dependent on the bit ratio as shown in Figure 4. This ratio
indicates the part of addresses with this certain bit set to
one. Low ratios provide better results, than ratios close to
50 %. Starting with such ratios of about 50 % postpones a
pattern with a rather high number of appropriate addresses.
This impedes our algorithm’s intention of prioritizing frequent
patterns.

 0
 25
 50

 0 8 16 24 32 40 48 56 64B
it

 R
a
ti

o
 i
n
 %

Routers

 0
 25
 50

 0 8 16 24 32 40 48 56 64B
it

 R
a
ti

o
 i
n
 %

Servers

 0
 25
 50

 0 8 16 24 32 40 48 56 64B
it

 R
a
ti

o
 i
n
 %

Clients

Fig. 4. Bit Ratio: Ratio of addresses with a certain bit set to one.

Routers Servers Clients

linear 2519 2148 9424

quadratic 2389 1974 9424

exponential 3641 2738 10109

TABLE III. RESIDUAL VARIANCES OF REGRESSION ANALYSIS

We performed regression analysis to investigate this.
Quadratic regression fitted best among linear, quadratic and
exponential approaches evaluated by the residual variance, as
shown in Table III. The coefficient of determination R2 is 0.58
for routers and 0.48 for servers. This means that roughly half
of the scanning results variance is determined by the starting
bit’s bit ratio. Residual variances for client nodes are higher
in comparison and regression fitting is of less quality. R2
is only 0.13 for quadratic regression. The influence of the
initial bit on the overall result is minor. Figure 5 shows the
scatter diagrams for routers and servers respectively. Every
crossing indicates a bit ratio and its related scanning result. The
resulting quadratic regression curves are added to the scatter
diagrams. We refrained from depicting regression for clients
due to space constraints.

V. DISCUSSION

Our results on pattern-based scanning approaches are
twofold: On the one hand, the manually crafted patterns that
are known from the literature turned out to be of limited
benefit. On the other hand, we proposed a pattern-based
algorithm that automatically discovers patterns in a sample and
generates addresses based on the found patterns. This novel
algorithm is able to outperform brute-forcing and manually-
crafted patterns. Focusing on manually-crafted patterns, the
low-byte pattern solely performs well with servers, and is even
worse than brute-forcing for clients. The port pattern finds
a fourth or less nodes than all other approaches within their
first 552 probes, and the OUI pattern typically finds less than
half of the nodes of our algorithm but requires 16 times the
number of probes. Return to our pattern-based algorithm, it
outperforms the other evaluated approaches, but its overall
performance is dependent on the start bit that is set during

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f

fo
u
n
d

 a
d

d
re

ss
e
s

Bit Ratio in %

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f

fo
u
n
d

 a
d

d
re

ss
e
s

Bit Ratio in %

Fig. 5. Scatter diagram and regression curve for routers (L) and servers (R)

initialization. Taking a neighbor bit might already impact the
performance negatively. However, we have shown that the
algorithm’s performance in dependence of the start bit can
be pre-estimated by means of simple bit-wise statistics for
servers and routers to a certain degree. Pre-estimation with
respect to clients is of less quality, and might be a consequence
of the high amount of random addresses generated by the
privacy extension in the sample data sets. A removal of these
temporary addresses from the data set is likely to improve
the results on pre-estimation, but also on overall scanning
results as their pseudo-randomness might negatively impact
the pattern discovery. [15] proposes an algorithm to identify
such addresses. Hosts using a temporary address are anyway
also reachable via a stable address that might be even easier
to guess.

The success of our pattern-based algorithm also high-
lights that address scanning is feasible with a comparable
low effort due to address-inherent patterns, and defense-in-
depth in the context of IPv6 reconnaissance seems incomplete;
notwithstanding, that already early RFCs as of 2008 advise
the assignment of addresses ”that are not obvious to guess”
[19] as low node density alone does not guarantee to be
undiscoverable. This points the way towards mitigation of
pattern-based scanning approaches. Random or pseudo-random
addresses, e. g., [20], repel the threat of finding implicit pat-
terns. Mitigation against our algorithm nevertheless requires
more effort than against manually-crafted patterns. To mitigate
the threat of manual patterns, choosing an address beyond the
patterns is enough. For example, 2001:db8::5:21 is probed by
the port pattern, but 2001:db8::6:21 is not.

VI.CONCLUSION AND FUTURE WORK

In this work we proposed a new methodology for enabling
scanning for active IPv6 addresses based on rule mining. The
fundamental idea behind this approach lies in the observation
that administrators do not select random addresses when
migrating their services to the IPv6 world, but rather rely on
patterns. While, opposed to IPv4, probing every single address
is not possible for IPv6 due to the sheer amount of existing
addresses, this approach uses prediction of patterns based on
a sample set of addresses in order to rearrange the scanning
order to enable faster retrieval of addresses. While this does
not allow scanning the whole IPv6 range, this technique opens
up great changes for fast retrieval of a large amount of used
addresses. Contrary to approaches based on experience, this
method allows the regular recalculation of the most likely
patterns in order to detect changes in the typical selection of
addresses. Future work includes the implementation of this
techniques into a scanning tool, more results are needed with
respect to the performance of the algorithm, as well as further
research on speeding up searches.

ACKNOWLEDGMENT

The authors thank Rene Wilhelm (RIPE) for the provision
of the data set. This research was funded by COMET K1, FFG
- Austrian Research Promotion Agency.

REFERENCES

[1] R. Graham, “masscan,” https://github.com/robertdavidgraham/masscan,
Accessed: 2015-03-04.

[2] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide scanning and its security applications,” in Proceedings of the 22nd
USENIX Security Symposium, 2013.

[3] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
Your Ps and Qs: Detection of Widespread Weak Keys in Network
Devices,” in Proceedings of the 21st USENIX Security Symposium,
2012.

[4] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the HTTPS certificate ecosystem,” in Proceedings of the 2013 Internet
Measurement Conference, 2013.

[5] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS
abuse,” in Symposium on Network and Distributed System Security,
2014.

[6] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Exit from Hell?
Reducing the Impact of Amplification DDoS Attacks,” in Proceedings
of the 23rd USENIX Security Symposium, 2014.

[7] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The
matter of Heartbleed,” in Proceedings of the 2014 Internet Measurement
Conference, 2014.

[8] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Spec-
ification,” Internet Requests for Comments, RFC Editor, RFC 2460,
December 1998.

[9] J. Ullrich, K. Krombholz, H. Hobel, A. Dabrowski, and E. Weippl,
“IPv6 Security: Attacks and Countermeasures in a Nutshell,” in 8th
USENIX Workshop on Offensive Technologies, 2014.

[10] T. Chown, “IPv6 Implications for Network Scanning,” Internet Requests
for Comments, RFC Editor, RFC 5157, March 2008.

[11] F. Gont and T. Chown, “Network Reconnaissance in IPv6 Networks,”
Work in Progress, Internet-Draft, January 2015. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-opsec-ipv6-host-scanning-05

[12] G. Lyon, “nmap,” http://nmap.org, Accessed: 2015-03-04.
[13] D. Leonard and D. Loguinov, “Demystifying Service Discovery: Imple-

menting an Internet-Wide Scanner,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, 2010, pp. 109–122.

[14] Z. Durumeric, M. Bailey, and J. A. Halderman, “An Internet-wide view
of Internet-wide scanning,” in Proceeding of the 23rd USENIX Security
Symposium, 2014.

[15] D. Malone, “Observations of IPv6 addresses,” in Passive and Active
Network Measurement, 2008, pp. 21–30.

[16] F. Gont, “IPv6 Toolkit,” https://github.com/fgont/ipv6toolkit, Accessed:
2015-03-04.

[17] I. H. Witten, E. Frank, and M. A. Hall, Data Mining, Pratical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2011.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[19] G. V. de Velde, C. Popoviciu, T. Chown, O. Bonness, and C. Hahn,
“IPv6 Unicast Address Assignment Considerations,” Internet Requests
for Comments, RFC Editor, RFC 5275, December 2008.

[20] F. Gont, “A Method for Generating Semantically Opaque Interface
Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC),”
Internet Requests for Comments, RFC Editor, RFC 7217, April 2014.

https://github.com/robertdavidgraham/masscan
https://tools.ietf.org/html/draft-ietf-opsec-ipv6-host-scanning-05
http://nmap.org
https://github.com/fgont/ipv6toolkit

APPENDIX A
PATTERN-BASED ALGORITHM

Our recursive algorithm for pattern discovery and address
generation is depicted in Algorithms 1 and 2. This addi-
tional description emphasizes the textual representation of
Section III.

Algorithm 1 doRecursionWith determines a further bit in
every recursion.
Input: pattern is a bit pattern with determined and undeter-

mined bits

1: if count(undetermined bits) < threshold then
2: iterateAddresses(pattern)
3: return false
4: end if

5: rule = findBestRule(pattern)
6: pattern = apply(pattern,rule)
7: doRecursionWith(pattern)

8: alternativeRule = inverse(rule)
9: alternativePattern = apply(pattern,alternativeRule)

10: doRecursionWith(alternativePattern)

Algorithm 2 findBestRule finds the rule for the highest
number of addresses.
Input: pattern is a bit pattern with determined and

undetermined bits

1: addresses = getAddressesWith(pattern)

2: for each undetermined bit in pattern do
3: calculateSupportForRule(addresses, undet. bit = 0)
4: calculateSupportForRule(addresses, undet. bit = 1)
5: end for each

6: return rule with highest support

