
Zero-Click SnailLoad:
From Minimal to No User Interaction

Stefan Gast
1�, Nora Puntigam

1
, Simone Franza

1
, Sudheendra Raghav Neela

1
,

Daniel Gruss
1
, and Johanna Ullrich

2

1
Graz University of Technology, Austria

{stefan.gast,sudheendra.neela,daniel.gruss}@tugraz.at
{nora.puntigam,simone.franza}@student.tugraz.at

2
University of Vienna, Austria

johanna.ullrich@univie.ac.at

Abstract. Network side channel often rely on privileged attacker po-
sitions, e.g., physical proximity, person-in-the-middle scenarios, or code
on the victim machine. Recent fully remote attacks without a privileged
position are either easily mitigated (e.g., ICMP pings) or require minimal
user interaction (e.g., SnailLoad).
In this paper, we reduce user interaction in fully remote network side-
channel attacks in two directions: First, we analyze 21 communication
tools that automatically establish connections without user interaction
with external references. We identify privacy-concerning automated be-
havior for 4 out of 11 messengers and 6 out of 10 email clients, leaking
victim IP addresses without user interaction, undermining end-to-end
encryption, and even enabling remote SnailLoad attacks without user
interaction. Second, we show that even without any specific client soft-
ware, merely processing TCP packets can already enable zero-click at-
tacks. We introduce a novel latency measurement method based on TCP
SYN packets, exploiting that TCP SYN packets to a closed port either
lead to a timeout or, in our experiments about once per second, an ICMP-
based response. Timing these responses yields a coarse SnailLoad trace,
sufficient to mount a video fingerprinting attack with an F1 score of 56%
compared to 89% on a similar Internet connection and the same number
of videos as prior work. Thus, our findings confirm in both directions
that fully automated side-channel attacks without user interaction are
feasible and posing a relevant privacy threat.

Keywords: Network side channel, Video fingerprinting, Timing

1 Introduction

Network side channels exploit observable features such as packet timings, sizes,
the number of transmitted packets, and other metadata [28, 67, 39, 50, 19, 61, 17,
22, 60, 37, 2, 36], inferring sensitive information, including streamed videos [57,
20] or accessed websites [21, 73, 62, 3, 47, 10, 66, 58, 20], content from voice

2 S. Gast et al.

communications [76], or sensitive personal details such as medical and financial
information [14]. Traditionally, most attacks have relied on passive monitoring
from within the same network or through attacker-controlled infrastructure along
the communication path.

Only recently, some works have considered fully remote attack scenarios,
where attackers measure latency exclusively from their own network packets [48,
46, 20]. For example, Murdoch and Danezis [48] demonstrated that network la-
tency variations could reveal activities of a Tor relay node, while Gast et al. [20]
showed how attackers could deduce victim website and video accesses solely from
observed latency traces between attacker and victim. Fully remote attacks rep-
resent a significantly greater threat, as they require minimal attacker resources,
can easily be scaled, and may be disguised within benign web content such as
advertisements, enabling potentially widespread exploitation.

Despite being a greater threat, fully remote attacks typically still require
some user interaction, e.g., clicking a link or visiting a webpage with attacker-
controlled content. This limits realistic attack scenarios to e.g., malicious ad-
vertisements or some form of user interaction. Without the requirement of user
interaction, attacks would be significantly easier to scale and mount in practice.
Given many other contexts where remote resources are loaded, e.g., messenger
and email programs, and some protocols requiring interaction with remote clients
without initiating a connection, we ask the following research question: Does sys-
tem and software behavior enable fully remote network side-channel attacks like
SnailLoad without the need for user interaction?

In this paper, we systematically investigate the possibility of fully remote
network side-channel attacks (“zero-click”) in two directions: the behavior of
software and the network stack. First, we analyze realistic scenarios involv-
ing popular client-side software such as messenger platforms and email clients.
Specifically, we examine whether such widely used applications automatically
initiate external network connections upon receiving content, without explicit
user interaction with the content (e.g., the message or email). In our experi-
ments, we observe privacy- and confidentiality-compromising behaviors in 4 out
of 11 messenger platforms and 6 out of 10 tested email clients. These applica-
tions automatically establish external connections, revealing victim IP addresses
without any user interaction, undermining end-to-end encryption, and enabling
zero-click remote SnailLoad-style attacks in practice.

Second, we consider an even more generic threat scenario. Even in absence
of privacy- and confidentiality-compromising client software, the basic behavior
of network stacks in common operating systems may enable zero-click attacks.
To explore this, we develop a novel latency measurement method based solely on
unsolicited TCP SYN packets sent from the attacker to a closed port on the vic-
tim’s home gateway (i.e., router). Unsolicited TCP SYN packets to closed ports
trigger a TCP RST or an ICMP Destination Unreachable response, yielding a
measurable latency for a SnailLoad-style attack. However, we observe that these
requests often do not reach target systems or time out due to highly restrictive

Zero-Click SnailLoad: From Minimal to No User Interaction 3

rate limiting. Still, on 9 connections in our experiments, we are able to obtain a
response to our unsolicited TCP SYN packets.

By distinguishing timings and ICMP responses of timed-out packets, we gen-
erate latency traces analogous to SnailLoad. However, our trace is significantly
coarser, given the infrequent response rate of only one packet per second. While
we expected this coarse granularity to be a hindrance for practical attacks, we
discover that these sparse traces are in fact still sufficient to mount practical side-
channel attacks. In a video fingerprinting attack with 10 videos, we achieve an F1

score of 56%, demonstrating the practicality of our zero-click method compared
to SnailLoad’s original F1 score of 89% on a similar Internet connection.

Our results clearly demonstrate that zero-click fully remote network side-
channel attacks are not only theoretically possible but practical, highlighting
significant privacy threats in everyday software and standard network behav-
iors. This expands the threat model of SnailLoad substantially beyond previous
scenarios. Given that the vast majority of client systems use TCP/IP as well as
messenger and email software today, this reveals a fundamental risk overlooked
in prior work. Consequently, our work indicates that further mitigations need to
be researched and deployed against fully remote network side-channel attacks,
especially zero-click variants.
Contributions. We make the following key contributions:

1. We systematically analyze automated external resource handling across 11
messengers and 10 widely-used email clients. Our results reveal unsolicited
connections in all 11 messengers, and 8 email clients, with 4 messengers and
6 email clients leaking the victim IP address.

2. We perform in-depth case studies for the affected messengers and 8 email
clients. We identify 3 email clients vulnerable to single-click attacks and 4
messengers vulnerable to implicit attacks (triggered implicitly by other user
actions), and 1 email client and 1 messenger to zero-click attacks.

3. We introduce a novel zero-click latency measurement approach based solely
on unsolicited TCP SYN packets sent to closed ports on the victim gateway.
Our experiments show that highly restrictive rate-limiting on the gateway
typically only leads to a single response per second, which is orders of mag-
nitude lower than the resolution from prior work.

4. We show that despite the coarse granularity of our latency measurements,
our approach still suffices to mount practical video-fingerprinting attacks,
reaching an F1 score of 56%, with zero user interaction.

Outline. Section 2 provides background. Section 3 systematically analyzes ex-
ternal reference handling in messenger and email clients. Section 4 introduces
a novel TCP SYN-based measurement method for SnailLoad-style attacks. Sec-
tion 5 discusses implications, mitigations, and limitations. Section 6 concludes.

2 Background

In this section, we provide background on network side channels including fully
remote attacks, as well as automated behaviors in applications and protocols.

4 S. Gast et al.

Network Side-Channel Attacks. Side-channel attacks exploit information
leaking through measurable physical or behavioral characteristics of systems.
Network side channels exploit packet timing [80, 19], packet sizes [27, 17, 58],
transmission directions [74, 52, 5, 16, 34], packet data [8, 79, 40], or a combination
thereof [55, 67, 11, 1, 77, 14, 51, 75, 76, 39, 4, 24, 50, 54, 56, 57, 42, 22, 64, 10,
65, 12, 36, 59, 23, 72]. Without needing direct access to the target, this allows
adversaries to make inferences about the system state [8, 79, 40], a user [55, 1,
80, 75, 4], or their activities [28, 67, 14, 76].

Network side channels have been used to infer websites visited by a user [27,
26, 51, 74, 39, 24, 50, 19, 56, 61, 64, 10, 65, 58, 5, 16, 34, 59], videos streamed [57,
17, 52, 37, 2, 23, 72], applications used [39], and even sensitive data like med-
ical records and voice conversations [14, 76]. Typically, these attacks operate
in person-in-the-middle (PITM) scenarios, which require a significant degree of
access or control over the victim’s network infrastructure, such as being on the
same (wireless) network or having access to a compromised router along the
traffic path. Additionally, many attacks assume that the attacker can either
capture packets directly or induce traffic on the victim’s system through some
form of code execution (e.g., JavaScript in a browser [1, 4, 57] or a native ap-
plication [1, 75]). These assumptions restrict the practicality of deploying such
attacks at scale, particularly against arbitrary victims on the open Internet.

Fully Remote Network Side-Channel Attacks. In contrast to traditional
network side channels, fully remote variants do not rely on traffic interception
or victim-side code execution [68, 7, 45, 35, 21, 44, 9, 20, 29]. With these, an off-
path attacker exchanges network packets with a victim system, inferring sensitive
data from observed responses. Eliminating the need for proximity or privilege,
they are easier to mount and scale. While most of these attacks reconstruct
properties of remote systems, e.g., their operating system or uptime, only two
attacks focus, like the more powerful PITM-based attacks, on the identification
of the accessed content by solely observing packet timing [21, 20]. Gong et al. [21]
and Gast et al. [20] exploited contention at the bottleneck of standard internet
connections – typically the last-mile link – where traffic queues cause measur-
able delays. Gong et al. [21] mounted a website-fingerprinting attack through
round-trip times of ICMP Echo (i.e., ping) messages to a victim’s home router.
Gast et al. [20] mounted website- and video-fingerprinting attacks through a TCP
connection with the victim and measuring round-trip times of acknowledgments.

Unlike PITM attacks, fully remote network side-channel attacks require no
special position or victim-side execution environment, aside from the require-
ment that the victim loads some asset from the attacker, e.g., an image or a
background transfer. Many active hosts do not reply to ICMP requests [6, 29].
This mitigates the attack by Gong et al. [21], albeit at the expense of network
diagnosis. Gast et al. [20] rely on TCP and cannot be mitigated in the same
way. While powerful, the attack requires that the victim initiates a connection
and loads some asset from the attacker, limiting deployment scenarios to content
embedding or social engineering.

Zero-Click SnailLoad: From Minimal to No User Interaction 5

Security Risks of External Resources. Modern client applications, e.g.,
email and messenger platforms, and web browsers, routinely render external con-
tent, including images, style sheets, or fonts, fetched from third-party servers. In
particular, email clients can fetch external resources referred to in HTML emails.
Similarly, messenger applications often follow external links embedded into mes-
sages to display previews (e.g., for direct image links) or additional information
(e.g., Open Graph [49] data for websites). This, however, introduces several se-
curity and privacy risks: First, accessing external resources may leak that a
particular message has been read, e.g., tracking pixels or web bugs [18]. Second,
additional metadata might be leaked such as the user’s IP address, operating
system and device behavior [79, 71]. Third, it enables attackers to inject or serve
malicious content under the guise of legitimate-looking resources [25, 43, 69, 70].

For mitigation, applications employ proxy servers, sandboxing techniques,
or prompt users before loading external content. However, these defenses are
inconsistently applied and often disabled by users. For example, users might en-
able external content in their email client if mails render improperly otherwise.
Moreover, even timing and volume of traffic via a proxy can still carry identify-
ing information or enable fingerprinting [27, 78]. Attackers can deliver carefully
crafted external references via email or messaging content, inducing connections
to their own infrastructure without user consent. Kirchner et al. [38] found that
21 of 36 instant-messaging mobile apps and 20 of 41 web-based instant-messaging
platforms analyze messages, visiting unique URLs and potentially leaking such
side-channel information without user consent.

Such mechanisms can also activate background network interactions that
serve as the basis for side-channel measurements. If external resources are fetched
automatically upon message reception or preview, attackers may observe latency
variations caused by concurrent victim activity. These behaviors, while subtle,
introduce a broad attack surface for remote adversaries, especially when com-
bined with fully remote side-channel techniques.

Automated Responses in Network Protocols. Network protocols such
as TCP and ICMP include built-in mechanisms for responding to unsolicited
packets. These behaviors are crucial for the proper functioning of the internet,
yet they also represent a potential side-channel vector. In particular, responses
to malformed, unexpected, or incomplete packets can expose timing informa-
tion that reveals network congestion, bandwidth bottlenecks, or the presence of
specific services [29]. For example, TCP initiates connections using a three-way
handshake beginning with a SYN packet [33]. If a SYN is sent to an open port, a
SYN-ACK is returned; if the port is closed, the system may respond with a TCP
RST or an ICMP Destination Unreachable message. ICMP itself is designed as
a diagnostic protocol, with messages such as Echo Reply, Time Exceeded, and
Port Unreachable intended to inform senders of network conditions [30, 31].

Modern operating systems implement rate-limiting and filtering to restrict
volume and frequency of responses. For example, ICMP Echo (i.e., ping), which
sends a ping request to check if a host is reachable, is often disabled for secu-
rity [41, 63, 13]. Additionally, ICMP rate limiting may suppress replies to other

6 S. Gast et al.

repeated probes, and firewalls may drop unsolicited packets altogether. However,
in practice, many devices still emit rate-limited responses, e.g., on home internet
gateways (i.e., home routers), given their verbose default configurations [29].

3 Exploiting Embedding of External Elements

Gast et al. [20] achieved client connections to an attacker-controlled server via
an external reference embedded in a benign website the victim user visits. While
requiring no elevated attacker privileges or code execution, this model still de-
pends on user interaction, e.g., clicking a link or loading a webpage.

In this section, we systematically analyze how far user interaction can be
eliminated with default-configured native and web-based messenger and email
applications. We evaluate whether these applications automatically initiate net-
work connections upon receiving, processing, or displaying references to external
references. Such behavior would allow a fully automated version of SnailLoad,
bypassing the user entirely, which we call Zero-Click SnailLoad.
Threat Model. We assume an attacker able to legitimately send messages or
emails to the victim. The attacker has no further access to the victim’s system,
no ability to execute code, and no control over the underlying network infras-
tructure. The attacker-controlled server hosts a file or image referenced via a
URL. The victim receives a message or email referencing the attacker’s server.
The attacker aims to mount a SnailLoad attack, without any interaction by the
victim. We consider two attack vectors: The first attack vector is link previews,
message rendering, or other background processing in messenger clients. The
second attack vector is external references in HTML emails in email clients.

For completeness, we also investigate the possibility of attacking the sender
of a message: In a scenario where the sender forwards a link to a benign-looking
image (e.g., a meme), that actually attacks the sender using SnailLoad. In this
scenario, the victim does not click or open the link but only forwards it. This also
undermines end-to-end encryption as parts of the message are used to trigger a
request to a remote server of either the attacker or the platform provider.

3.1 Evaluation Methodology

We deploy a SnailLoad-style server that records information of the potential
unsolicited network connections. The server logs the following information for
each incoming connection: (1) the source IP address, to determine whether it is
the victim’s client connecting, a proxy or a web cache by the messenger platform
and (2) whether the external resource is loaded or the connection aborts. To the
outside, the external resource appears as a static file. We embed the external
reference into each message or email, e.g., in the form of a simple image tag: . The image may or may not be visible on
the client, e.g., a legitimate-looking image or a small tracking pixel.

We evaluate whether the client opens a connection (1) immediately upon
message receipt, e.g., email delivery on the client; (2) when there is interaction

Zero-Click SnailLoad: From Minimal to No User Interaction 7

Table 1. Observed behavior of messenger platforms with embedded external references

Messenger Victim Role Trigger Im
a
g
e

L
in
k

P
re
v
ie
w
s

W
eb

si
te

L
in
k

P
re
v
ie
w
s

C
li
en
t
/
S
er
v
er

C
o
n
n
ec
ti
o
n

C
a
ch
in
g

L
a
te
n
ci
es

O
b
-

se
rv
a
b
le

Im
p
li
ci
t
A
tt
a
ck

Discord
Sender Send ✓ ✓

1
Server ✓

2
✓

3
✗

Receiver – ✓
4

✓
4

– ✓
2

✗ ✗

Facebook Mes.
Sender Send ✓ ✓

1
Server ✓

5
✓

3
✗

Receiver – ✓
4

✓
4

– ✓
5

✗ ✗

Google Chat
Sender Type, Send ✓ ✓

1
Server ✓

5
✓

3
✗

Receiver – ✓
4

✓
4

– ✓
5

✗ ✗

iMessage
6 Sender Type, Send ✓ ✓

1
Server ✗ ✓

3
✗

Receiver – ✓
4

✓
4

– ✗ ✗ ✗

iMessage
7 Sender Type, Send ✓ ✓

1
Client ✗ ✓ ✓

Receiver – ✓
4

✓
4

– ✗ ✗ ✗

Instagram
Sender Send ✓ ✓

1
Server ✓

5
✓

3
✗

Receiver – ✓
4

✓
4

– ✗ ✗ ✗

Microsoft Teams
Sender Send ✓ ✓

1
Server ✓

5
✓

3
✗

Receiver Open Chat ✓ ✓
1

Server ✓
5

✓
3

✗

Signal
Sender Type ✗ ✓

1
Client ✗ ✓ ✓

Receiver – ✗ ✓
4

– ✗ ✗ ✗

Snapchat
Sender Send ✓ ✓

1
Server ✓

5
✓

3
✗

Receiver – ✓
4

✓
4

– ✗ ✗ ✗

Telegram
Sender Type, Sending ✓ ✓

1
Server ✓

2
✓

3
✗

Receiver – ✓
4

✓
4

– ✓
2

✗ ✗

Viber
Sender Send ✓ ✓

1
Client ✓

8
✓ ✓

Receiver Open Chat ✓
9

✓
1,9

Client
9

✓
8,9

✓
9

✓
9

Whatsapp
Sender Type ✓ ✓

1
Client ✓

8
✓ ✓

Receiver – ✓
4

✓
4

– ✓ ✗ ✗

1
also follows og:image Open Graph meta tag,

2
server-side, only main link

cached, og:image is followed every time,
3
only server-side latencies,

4
same

preview as sender,
5
server-side,

6
iCloud Private Relay enabled,

7
iCloud

Private Relay disabled,
8
client-side, until app is closed,

9
only if sender is in

contact list

with other messages, e.g., scrolling or hovering over the malicious message; (3)
when clicking the message and it is being rendered; and for completeness also
(4) when entering or sending a link. Each test is repeated multiple times per
platform to ensure reproducibility and to assess caching behavior.

3.2 Messenger Platforms

Messenger platforms are an attractive target for remote side-channel attacks
due to their ubiquity, always-on behavior, and support for rich message content,
including embedded links. To assess their vulnerability to zero-click SnailLoad-
style attacks, we systematically analyzed 11 popular messengers: Discord, Face-
book Messenger, Google Chat, iMessage, Instagram Direct Messenger, Microsoft
Teams, Signal, Snapchat, Telegram, Viber, and WhatsApp. Each platform is

8 S. Gast et al.

tested using its default configuration across desktop, web, and mobile variants
(if they exist). For iMessage, we measure two configurations, one with iCloud
Private Relay enabled and one without. We largely find the same behavior across
platforms, with similar backend handling of messages (e.g., through a CDN).

For each platform, we examine two types of referencing an attacker-controlled
server: a direct link to an image (e.g., http://atta.ck/plot.jpg) and a link to a
website (e.g., http://atta.ck). The website also has an Open Graph og:image

meta tag, used by all messengers to retrieve website preview images, poten-
tially also enabling attacks. This allows us to observe the connection behavior
for both types of links, and potential differences, in various usage scenarios.
More specifically, we test whether a connection is established when composing a
message, sending it, interacting with the app but not the conversation, opening
the conversation, or interacting with the embedded link. We record whether a
client-side or server-side connection occurred, whether the user’s IP address was
exposed, whether repeated interactions triggered additional requests (indicating
lack of caching), and whether a link preview was rendered. Finally, we deter-
mined whether these conditions suffice to enable a zero-click or implicit variants
of SnailLoad, which we only found in 4 messengers.

The results, summarized in Table 1, show that all messengers perform some
form of automatic interaction with external links, establishing unsolicited con-
nections, typically through server-side proxies. Concretely, 8 out of 11 platforms
initiate server-side connections when messages are sent or received. Note that
this undermines end-to-end encryption as parts of the message, i.e., the URL,
are exposed to the platform provider without user consent.

We observe that 4 messengers, Whatsapp, Signal, iMessage and Viber, expose
user IP addresses through direct client-side connections. For these messengers,
a connection is triggered immediately upon typing the link or when sending the
final message, and is made directly from the sender’s device. This exposes not
only when a link is sent but also enables an attacker to target a victim forward-
ing a benign-looking image to others. While caching may limit the effect, unique
links can be sufficient to identify users. For iMessage, the connection behavior
is more nuanced: The user’s IP address is exposed when sending a link to an
external resource but only upon receiving a message if iCloud Private Relay is
disabled. Otherwise, the IP address is not exposed but also no manual interac-
tion is required for the proxy to access the resource. Thus, iMessage enables an
implicit SnailLoad attack, i.e., no user interaction with the external resource,
on the sender and, in some configurations, also on the receiver. For Viber, we
found the behavior even more security- and privacy-concerning: In addition to
opening a client-side connection when sending the message, we also observed it
to open a client-side connection when the receiving user opens the chat window
and has the sender in the contact list, enabling targeted SnailLoad attacks.

We conclude that exploiting unsolicited link interactions for SnailLoad-type
attacks is a feasible attack vector for some messengers. Most messengers use
proxy servers for interaction with the remote server, which still leaks side-channel
information and in particular undermines the confidentiality of the communica-

Zero-Click SnailLoad: From Minimal to No User Interaction 9

tion channel through out-of-band requests to the platform provider, e.g., under-
mining end-to-end encryption. However, messengers vulnerable to zero-click and
implicit attacks using no proxy server enable full SnailLoad attacks, i.e., they
raise stronger privacy concerns.

3.3 Email Clients

Email clients are also an attractive target for remote side-channel attacks. They
are widely used, run most of the time, and support embedding of external re-
sources, e.g., pictures. To assess their vulnerability to zero-click SnailLoad-style
attacks, we systematically analyze 10 email clients: Apple Mail (macOS, iPhone,
Watch), BlueMail, eM Client, Gmail, GMX, Mailbird, Microsoft Outlook, Pro-
ton Mail, Spark Mail, and Thunderbird. Each platform is tested using its default
configuration across desktop, web, and mobile variants (if they exist). For Ap-
ple Mail, we explicitly test different configurations of Protect Mail Activity and
iCloud Private Relay to assess privacy-relevant differences. We specify when ap-
plications are found to expose different behavior on different platforms.

We embed a static reference to an image on an attacker-controlled server into
an HTML email and observe connection behavior in various usage scenarios. We
focus only on the receiver side as the client email was crafted by the attacker. We
record whether external references are loaded automatically, what kind of con-
nection is established (client-side or via a proxy), whether the user’s IP address
is exposed, and which user actions (if any) triggers the connection. We record
whether a client-side connection occurs and whether the image is automatically
rendered. Finally, we determine whether these conditions suffice for zero-click
SnailLoad, which we found in the Spark Mail email client.

Table 2 summarizes the connection behavior of all tested email clients. Com-
pared to messengers, where most platforms use a proxy to access the image,
we observe a much higher rate of direct client-side IP exposure in email clients.
Across all tested clients, 6 out of 10 establish client-side connections. In Blue-
Mail, the connection is made automatically upon opening the email, in Spark
Mail even upon just hovering the email. In particular the behavior of Spark
Mail is critical as it enables an end-to-end zero-click SnailLoad attack. Apple
Mail shows different behavior across devices. On macOS and iPhone with Pro-
tect Mail Activity and iCloud Private Relay enabled, external content is retrieved
through proxies, e.g., Cloudflare. In contrast, Apple Mail on the Apple Watch es-
tablishes a direct connection if the email has previously been opened on another
device, making it vulnerable to a time-delayed attack scenario. This inconsis-
tency in behavior can introduce privacy compromises that may go unnoticed by
users who assume Apple Mail behaves uniformly across devices. BlueMail ex-
poses similar behavior in all scenarios when opening an email. Web-based clients
expose less side-channel information in our attack. Proton Mail and GMX block
all unsolicited external connections and require explicit interaction for the re-
mote resource to load. Gmail, while automatically loading external references,
consistently uses proxy infrastructure. While this masks the user’s IP address,
it still leaks when the user opens an email, which can be a privacy concern.

10 S. Gast et al.

Table 2. Observed behavior of email clients with embedded external references

Client Trigger C
li
en
t
C
o
n
n
.

S
er
v
er

C
o
n
n
.

A
u
to
m
.
D
is
p
la
y

C
a
ch
in
g

S
in
g
le
-C

li
ck

A
tt
.

Z
er
o
-C

li
ck

A
tt
.

Apple Mail (macOS) Open ✗ ✓ ✓ ✓ ✗ ✗

Apple Mail (iPhone) Open ✗ ✓ ✓ ✓ ✗ ✗

Apple Mail (Watch) Open ✓ ✗ ✓ ✓ ✓ ✗

BlueMail Open ✓ ✗ ✓ ✗ ✓ ✗

eM Client Manual Click ✓ ✗ ✗ ✓ ✗ ✗

Gmail (Web/iPhone) Open ✗ ✓ ✓ ✓ ✗ ✗

GMX (Web) None ✗ ✗ - - - -
Mailbird Manual Click ✓ ✗ ✗ ✓ ✗ ✗

Microsoft Outlook Manual Click ✗ ✓ ✗ ✓ ✗ ✗

Proton Mail (Web) None ✗ ✗ - - - -
Spark Mail Hover Inbox ✓ ✗ ✗ ✗ ✓ ✓

Thunderbird Manual Click ✓ ✗ ✗ ✓ ✗ ✗

Similarly, Microsoft Outlook relies on user-initiated clicks and proxy loading,
exposing similar information as Gmail albeit upon a user click.

In summary, web-based clients behave more similar to messengers, where
server-side connections are the default, whereas native email clients and apps
frequently expose user metadata to remote servers via client-side connections.
BlueMail and Apple Mail on the Apple Watch require the user to open the
email to run a SnailLoad attack. Spark Mail enables reliable zero-click SnailLoad
attacks without even opening the email.

4 Eliminating User Interaction with TCP SYNs

In the previous section, we minimized user interaction significantly, yet some level
of interaction remained unavoidable. This leads to the continued exploration of
the paper’s central question: Can user interaction be entirely eliminated?

To address this, the threat model pivots from a direct TCP connection with
the victim to an attacker interacting with the victim’s home gateway. As ICMP
Echo Replies are frequently disabled and TCP ports closed, we explore whether
the router’s responses to unsolicited TCP SYNs are another source of network
latency leakage. Even if a connection cannot be established, the router may re-
spond with a TCP RST or an ICMP Destination Unreachable that can be lever-
aged to gather network activity patterns. First, we examine 4 different internet
connection and home gateway combinations to analyze under which conditions
their response behavior can be exploited. Second, we mount a video fingerprint-
ing attack, achieving an F1 score of 56% for 10 YouTube videos, showing that

Zero-Click SnailLoad: From Minimal to No User Interaction 11

Table 3. Requirements for the TCP SYN attack. The victim needs to have a public IP
address (without carrier-grade NAT), with the home gateway responding to incoming
TCP SYN packets on the closed port. Rate limits on the home gateway only reduce
the attacker’s effective sample rate, but cannot prevent the attack.

Carrier-Grade NAT
Home Gateway Responding
Rate Limit

Attack feasible ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

such attacks are feasible even without user interaction. Third and finally, to
assess the practicality on other connections, we perform a user study with the
internet connections of 102 participants, revealing that 9 of the examined con-
nections are potentially exploitable.

4.1 Examining TCP SYN Response Behavior

In this section, we investigate whether closed port TCP SYN response timings
can be generally used to infer a victim’s network activity. Therefore, we initially
observe the behavior of 4 Internet connection and home gateway combinations.
From the observed behavior, we derive the prerequisites for an attack.
Measurement Setup. We send TCP SYN packets with a specific destina-
tion port, to the gateway’s public IP address and record the round-trip times
between the sent TCP SYN and the received response (or an encountered time-
out). For each tested Internet connection and gateway, two sets of measurements
are performed. First, latency traces are recorded while the network remains idle
to establish a baseline. Then, we record traces while a video stream is playing
on YouTube to observe potential differences in response behavior. We repeat
each test multiple times with varying TCP SYN intervals ranging from 50ms to
100ms, on multiple ports to ensure the observed effects are not port-specific.
Results and Key Observations. We examine 4 connection and gateway
combinations at two different ISPs. We observe different behaviors across the
four tested connections, revealing varying levels of susceptibility to the attack:

For both cable connections from ISP A, we did not receive any responses
from both of the two tested routers. This behavior suggests that these routers
do not respond in a way that could reveal network activity and that the attack
is not feasible for these routers. For the cable connection from ISP B, we re-
ceive responses to our TCP SYN packets, see Figure 1. Interestingly, the router
only replies after receiving multiple TCP SYN packets, answering the packets
accumulated until that point in rapid succession, causing rather large baseline
response delays. Instead of consistently receiving responses, the results show a
mix of refusals and timeouts occurring in evenly spaced intervals, suggesting a
token bucket-based rate limiter. Comparing Figures 1a and 1b, the pattern is
consistent for the idle network and during video streaming. This pinpoints the

12 S. Gast et al.

0 2 4 6 8 10

2

4

6

8

10

Time [s]

R
T
T

[s
]

a. idle

0 2 4 6 8 10

2

4

6

8

10

Time [s]
b. Video playing

Fig. 1. TCP SYN response times of a 120Mbit/s cable connection, idle and with a video
playing, with a 10 s timeout for responses. We only receive responses after sending
multiple TCP SYN packets, which then are replied to in rapid succession, causing
a sawtooth pattern. Additionally, packets are silently dropped in periodic intervals,
indicating a rate-limit. The traces for an idle and a busy connection look very similar,
as the TCP SYN packets are handled by the carrier-grade NAT and therefore do not
travel over the last-mile bottleneck.

40 60 80

20

40

Time [s]

R
T
T

[m
s]

a. idle

40 60 80

20

40

Time [s]
b. Video playing

Fig. 2. TCP SYN response times of a 50Mbit/s ADSL connection, idle and with a
video playing, with a 50ms timeout for responses. When idle, we receive a response
once per second within approximately 35ms. When a video is playing, we observe
increased response times and additional timeouts when the client is buffering a video
segment.

presence of carrier-grade NAT [32], i.e., multiple home gateways share a public
IPv4 address. As a result, TCP SYN packets sent to the victim’s external IP
address do not reach their home gateway but are instead handled at the ISP
level. Consequently, the attack is not applicable in this scenario.

In contrast, the DSL connection from ISP B exhibits two clearly distinct
and reproducible patterns, depending on whether the network is idle or actively
streaming a video. As shown in Figure 2, the latency traces for an idle network
follow a stable pattern, whereas measurements taken during video streaming
display a unique and consistently observable fluctuation. This effect is present
across all measurement variations, confirming that the attack successfully detects
network activity.
Evaluation. Our results demonstrate that closed port TCP SYN responses
can indeed be exploited to measure network latencies and to capture distinct
patterns of network activity. This offers a potential solution to eliminate the
user interaction element in SnailLoad. However, it is evident that the attack is
not universally applicable to all routers or ISPs. In particular, two conditions

Zero-Click SnailLoad: From Minimal to No User Interaction 13

must be met for the attack to be successful: First, the victim’s gateway must
have a public IP address, without relying on carrier-grade Network Address
Translation. Otherwise, the requests are handled by the victim’s ISP and do not
reach the internet connection’s last mile, a prerequisite of the attack. Second,
the victim’s home gateway has to respond to incoming TCP SYNs designated
to a closed port. These responses often are rate-limited, yet, in Section 4.2 we
show that this does not prevent attacks. Table 3 summarizes these prerequisites.

4.2 Video Fingerprinting with TCP SYNs

In this section, we mount an end-to-end video fingerprinting attack, exploiting
gateway responses to TCP SYN packets sent to a closed port. While the vic-
tim user streams a video, the attacker repeatedly sends TCP SYN packets and
records the latencies of the corresponding ICMP Destination Unreachable mes-
sages sent by the gateway. We demonstrate our attack on a set of 10 videos
trending on YouTube. For each video, we record 50 latency traces of 180 s length
in Full HD. We then train a CNN on 40 of the traces collected for each video and
evaluate the attack on the remaining 10 traces. Our attack achieves an F1 score
of 56%, significantly higher than the random guessing accuracy of F1 = 10%.
Threat Model. Like in Section 3, the attacker is unable to intercept any
traffic and cannot run any code on the victim’s system. We assume the victim’s
gateway does not respond to ICMP echo messages. However, we assume the
router responds to incoming TCP SYN packets destined to closed ports with
either TCP RST or ICMP Destination Unreachable messages. Additionally, we
consider the victim’s gateway to have a public IP address without carrier-grade
NAT (cf. Section 4.1), and that the attacker knows the victim’s IP address.
Trace Recording. Our setup consists of the victim clien, playing the YouTube
videos, and an attacker-controlled virtual server in the cloud, recording the la-
tency traces. The client is connected to the home gateway, which is connected
to the Internet via a 50Mbit/s ADSL connection. The home gateway is in its
default configuration, rate limiting ICMP to 1 packet per second. A script on
the victim client controls the automated recording of the individual traces. We
record 50 traces per video, i.e., 500 traces in total, recorded in random order to
prevent order-related effects. For each trace, the script signals the start of a new
trace to the server, waits for 1 s to 3 s and starts playing the video in Firefox
136.0.3. While the video is playing, the server repeatedly sends TCP SYN pack-
ets to a closed port on the victim’s gateway, in 50ms intervals. For each TCP
SYN packet, the server records the latency of the corresponding response. For
unresponded TCP SYNs, the server records a latency of 50ms. After 180 s, the
script signals the end of the trace to the server and stops the video.
Training the CNN. Like prior work [15, 53, 20], we apply a Short-Time Fourier
Transform (STFT) to each trace and train a Convolutional Neural Network
(CNN) on the results. Due to the ICMP rate limit, we choose a rather large
window size of 256 samples for the STFT, i.e., 12.8 s with a sampling interval of
50ms. Our CNN consists of 3 convolutional layers, each of which followed by a
max pooling layer and a dropout layer. These 3 blocks are followed by a flatten

14 S. Gast et al.

Prediction

V
id
eo

0

5

10

a. 180 s
Prediction

V
id
eo

0

5

10

b. 90 s

Fig. 3. Confusion matrices of the video-fingerprinting attack based on TCP SYN pack-
ets. On a 50Mbit/s ADSL connection, we achieve an F1-score of 56%, with 50 traces
per video and a recording time of 180 s per trace. For comparison, if we reduce the
recording time to 90 s, the F1-score drops to 31%.

layer and another dropout layer. This dropout layer is followed by 2 blocks, each
consisting of a dense layer and a dropout layer. These blocks are followed by a
final dense layer, yielding the estimated likelihoods that the input corresponds
to the specific label for each possible label. Out of the 50 traces for each video,
we use 36 traces as a training set to fit the model, 4 traces as a validation set to
evaluate the model during training and 10 traces as a test set for the evaluation
of the trained model. We empirically choose the hyperparameters for the CNN to
achieve good generalization against the validation set and apply early-stopping
to reduce overfitting.
Results. We evaluate the trained model on the test set, consisting of the re-
maining 10 traces per video. Despite the rate-limit imposed by the victim’s
gateway, we achieve an F1-score of 56%, significantly higher than random guess-
ing (which would be F1 = 10%). On a similar ADSL connection, Gast et al. [20]
reported a higher accuracy of F1 = 89% for their attack based on TCP ACKs,
with a recording time of only 90 s per trace. However, their video-fingerprinting
attack worked with a sample rate of 20Hz, while we are effectively restricted to
only 1Hz by the ICMP rate-limit. For comparison, we also evaluate our attack
with the recorded traces truncated to 90 s. With this, the accuracy drops to
only F1 = 31%. Figure 3 shows the confusion matrices for both 180 s and 90 s
traces. Our results show that rate-limiting is not sufficient to mitigate leakage
from response timings. Even with a relatively strict rate-limit of only 1 response
per second, video-fingerprinting attacks are still feasible.

4.3 User Study

For an estimate of the general applicability of this attack, we conducted a user-
study with 102 computer science students. With their consent, we collected their
IP addresses and examined the response behavior of the IP addresses with re-
gard to Section 4.1. We also asked the participants about the type of Internet
connection they have and whether they have a true public IP address, without
a carrier-grade NAT. Figure 4 summarizes the results of our study, finding 9 out

Zero-Click SnailLoad: From Minimal to No User Interaction 15

0 20 40 60 80 100

Total

IP Responding

Public IP

No Ratelimit

102

22

9

1

Fig. 4. User study results on internet connections with 102 participants. For 22 con-
nections responded to TCP SYN requests to closed ports. Of these 22 connections, 9
had a public IP without carrier-grade NAT, making them potentially vulnerable to our
attack. 1 of the vulnerable connections did not even rate limit the responses.

of 102 (i.e., 8.8%) of the examined connections to be potentially vulnerable. 7
of them responded with ICMP Destination Unreachable messages, all of them
rate-limited to 1 response per second. 1 home gateway responded with TCP RST
messages, delayed in a similar way as the responses from the cable connection
in Section 4.1. 1 home gateway responded with TCP RST messages and did not
even rate-limit them.

5 Discussion

The feasibility of fully automated, zero-click network side-channel attacks de-
pends strongly on the behavior of applications and the network. Our work shows
that there is a significant variance across messengers and email clients in their
default behavior and with how little interaction they expose users to this threat,
e.g., single- or zero-click. Still, our results are sufficient to show that it is not
necessary for the victim to initiate a connection through user interaction, such
as opening an email or opening a website. This does not only make the attack by
Gast et al. [20] more scalable, with little to no user interaction, it also exposes
victim timing information and IP addresses. Surprisingly, we also found that
both client-side proxied server-side accesses pose a separate privacy risk as these
accesses undermine end-to-end encryption by exposing message parts, i.e., text
looking like a URL, to out-of-band provider APIs, e.g., to generate previews.
There is an abundance of applications beyond the ones we investigated that
could similarly serve as targets of our attacks.

Similarly, our TCP SYN-based measurements depend on the handling of
TCP SYN requests. As described in Section 4, many networks simply ignore
these requests and, thus, do not expose themselves to zero-click SnailLoad-style
attacks. Still, a significant number of users is affected, rendering our attack a
real-world threat. With increasing adoption of IPv6 for private internet connec-
tions, the need for NAT decreases, exposing more devices behind the last-mile
bottleneck as potential targets. Furthermore, other protocols may expose simi-
lar behavior that leaks round-trip time information. In essence, with our work,
the SnailLoad attack surface has shifted from attacks depending on some user
activity to unknowingly initiate the attack to attacks where the user does not
initiate the attack, cannot see that an attack is going on, nor interfere with the

16 S. Gast et al.

attack. Consequently, SnailLoad-style attacks must be taken more seriously and
mitigations are needed for commodity systems.

6 Conclusion

In this paper, we systematically investigated realistic scenarios for fully re-
mote network side-channel attacks requiring no user interaction. We analyzed
software-induced and network-level vectors, showing that attackers can eliminate
the need for explicit user action while still mounting practical attacks.

First, we examined the handling of external references in widely-used soft-
ware. Our analysis of 10 email clients and 11 messenger platforms revealed
privacy- and confidentiality-compromising behavior in 6 email clients and 4 mes-
sengers. 4 messengers and 1 email client automatically initiate external connec-
tions from the client machine, undermining end-to-end encryption, enabling at-
tackers to exfiltrate victim IP addresses and to perform SnailLoad-style attacks.

Second, we introduced a novel TCP SYN-based latency measurement ap-
proach that bypasses software-specific behavior entirely. By sending TCP SYN
packets to closed ports, we observe a low-rate but consistent signal of ICMP
responses (about 1 packet per second). Despite this coarseness, we demonstrate
the feasibility of video fingerprinting attacks. This shows that even fundamental
behaviors of the network stack enable zero-click remote attacks, independent of
specific application-level functionality.

Taken together, our results show that zero-click fully remote side-channel
attacks are not only theoretically possible but practically feasible. They expose
a previously underestimated attack surface, arising from both common software
practices and inherent network behavior. This highlights an urgent need for
reconsidering assumptions in the design of secure systems and network stacks.

Acknowledgments

The final version of this paper is published at ESORICS 2025. We thank our
anonymous reviewers for their valuable feedback. This research is supported in
part by the European Research Council (ERC project FSSec 101076409), the
Austrian Science Fund (FWF SFB project SPyCoDe 10.55776/F85 and FWF
project NeRAM 10.55776/I6054), and SBA-K1 NGC, a COMET Center within
the COMET – Competence Centers for Excellent Technologies Programme,
funded by BMIMI, BMWET, and the federal state of Vienna. Additional funding
was provided by a generous gift from Intel. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are those of the authors and
do not necessarily reflect the views of the funding parties.

References

1. Abbot, T., Lai, K., Lieberman, M., Price, E.: Browser-Based Attacks on Tor. In:
PET (2007)

Zero-Click SnailLoad: From Minimal to No User Interaction 17

2. Afandi, W., Bukhari, S.M.A.H., Khan, M.U.S., Maqsood, T., Khan, S.U.: Finger-
printing Technique for YouTube Videos Identification in Network Traffic. IEEE
Access 10, 76731–76741 (2022)

3. Apthorpe, N., Reisman, D., Sundaresan, S., Narayanan, A., Feamster, N.: Spy-
ing on the smart home: Privacy attacks and defenses on encrypted iot traffic.
arXiv:1708.05044 (2017)

4. Arp, D., Yamaguchi, F., Rieck, K.: Torben: A Practical Side-Channel Attack for
Deanonymizing Tor Communication. In: ASIA CCS (2015)

5. Bahramali, A., Bozorgi, A., Houmansadr, A.: Realistic Website Fingerprinting By
Augmenting Network Traces. In: CCS (2023)

6. Bano, S., Richter, P., Javed, M., Sundaresan, S., Durumeric, Z., Murdoch, S.J.,
Mortier, R., Paxson, V.: Scanning the Internet for Liveness. In: Computer Com-
munications Review (2018)

7. Bender, A., Sherwood, R., Spring, N.: Fixing Ally’s Growing Pains with Velocity
Modeling. In: SIGCOMM (2008)

8. Beverly, R.: A Robust Classifier for Passive TCP/IP Fingerprinting. In: PAM
(2004)

9. Beverly, R., Luckie, M., Mosley, L., Claffy, K.: Measuring and Characterizing IPv6
Router Availability. In: PAM (2015)

10. Bhat, S., Lu, D., Kwon, A., Devadas, S.: Var-CNN: A Data-Efficient Website Fin-
gerprinting Attack Based on Deep Learning. PoPETS (2019)

11. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy Vulnerabilities in
Encrypted HTTP Streams. In: PET (2006)

12. Bushart, J., Rossow, C.: Padding Ain’t Enough: Assessing the Privacy Guarantees
of Encrypted DNS. In: USENIX FOCI (2020)

13. Chaba, Y., Singh, Y., Aneja, P.: Performance Analysis of Disable IP Broadcast
Technique for Prevention of Flooding-Based DDoS Attack in MANET. Journal of
Networks 4(3), 178–183 (2009)

14. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-Channel Leaks in Web Applications:
A Reality Today, a Challenge Tomorrow. In: S&P (2010)

15. Chen, Z., Xu, Y.Q., Wang, H., Guo, D.: Deep STFT-CNN for spectrum sensing in
cognitive radio. IEEE Communications Letters (2020)

16. Deng, X., Yin, Q., Liu, Z., Zhao, X., Li, Q., Xu, M., Xu, K., Wu, J.: Robust
Multi-tab Website Fingerprinting Attacks in the Wild. In: S&P (2023)

17. Dubin, R., Dvir, A., Pele, O., Hadar, O.: I Know What You Saw Last
Minute—Encrypted HTTP Adaptive Video Streaming Title Classification. IEEE
Transactions on Information Forensics and Security 12 (2017)

18. Englehardt, S., Han, J., Narayanan, A.: I never signed up for this! Privacy impli-
cations of email tracking. In: PETS (2018)

19. Feghhi, S., Leith, D.J.: A Web Traffic Analysis Attack Using Only Timing Infor-
mation. IEEE Transactions on Information Forensics and Security (2016)

20. Gast, S., Czerny, R., Juffinger, J., Rauscher, F., Franza, S., Gruss, D.: Snail-
Load: Exploiting Remote Network Latency Measurements without JavaScript. In:
USENIX Security (2024)

21. Gong, X., Borisov, N., Kiyavash, N., Schear, N.: Website Detection Using Remote
Traffic Analysis. In: PETS (2012)

22. Gu, J., Wang, J., Yu, Z., Shen, K.: Walls Have Ears: Traffic-based Side-Channel
Attack in Video Streaming. In: INFOCOM (2018)

23. Hasselquist, D., Witwer, E., Carlson, A., Johansson, N., Carlsson, N.: Raising the
Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic.
PoPETS (2024)

18 S. Gast et al.

24. Hayes, J., Danezis, G.: k-fingerprinting: A Robust Scalable Website Fingerprinting
Technique. In: USENIX Security (2016)

25. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks:
stealing the pie without touching the sill. In: CCS (2012)

26. Herrmann, D., Wendolsky, R., Federrath, H.: Website Fingerprinting: Attacking
Popular Privacy Enhancing Technologies with the Multinomial Näıve-Bayes Clas-
sifier. In: CCSW (2009)

27. Hintz, A.: Fingerprinting Websites Using Traffic Analysis. In: PET (2003)

28. Hogye, M.A., Hughes, C.T., Sarfaty, J.M., Wolf, J.D.: Analysis of the Feasibility of
Keystroke Timing Attacks over SSH Connections. Tech. rep., School of Engineering
and Applied Science University of Virginia (2001)

29. Holzbauer, F., Maier, M., Ullrich, J.: Destination Reachable: What ICMPv6 Error
Messages Reveal About Their Sources. In: IMC (2024)

30. Internet Engineering Task Force: RFC 792: Internet Control Message Protocol
(1981), https://datatracker.ietf.org/doc/html/rfc792

31. Internet Engineering Task Force: RFC 4443: Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification (2006), https:
//datatracker.ietf.org/doc/html/rfc4443

32. Internet Engineering Task Force: Common Requirements for Carrier-Grade NATs
(CGNs) (2013), https://datatracker.ietf.org/doc/rfc6888/

33. Internet Engineering Task Force: RFC 9293: Transmission Control Protocol (TCP)
(2022), https://datatracker.ietf.org/doc/html/rfc9293

34. Jin, Z., Lu, T., Luo, S., Shang, J.: Transformer-based Model for Multi-tab Website
Fingerprinting Attack. In: CCS (2023)

35. Kadloor, S., Gong, X., Tezcan, T., Borisov, N.: Low-Cost Side Channel Remote
Traffic Analysis Attack in Packet Networks. In: IEEE ICC (2010)

36. Khan, M.U.S., Bukhari, S.M.A.H., Maqsood, T., Fayyaz, M.A.B., Dancey, D.,
Nawaz, R.: SCNN-Attack: A Side-Channel Attack to Identify YouTube Videos
in a VPN and Non-VPN Network Traffic. Electronics 11(3) (1 2022)

37. Khan, M.U., Bukhari, S.M., Khan, S.A., Maqsood, T.: ISP can identify YouTube
videos that you just watched. In: IEEE FIT (2021)

38. Kirchner, R., Koch, S., Kamangar, N., Klein, D., Johns, M.: A Black-Box Pri-
vacy Analysis of Messaging Service Providers’ Chat Message Processing. Privacy
Enhancing Technologies (2024)

39. Korczyński, M., Duda, A.: Markov chain fingerprinting to classify encrypted traffic.
In: IEEE Conference on Computer Communications (2014)

40. Lastovicka, M., Jirsik, T., Celeda, P., Spacek, S., Filakovsky, D.: Passive OS Fin-
gerprinting Methods in the Jungle of Wireless Networks. In: NOMS (2018)

41. Lau, F., Rubin, S.H., Smith, M.H., Trajkovic, L.: Distributed Denial of Service
Attacks. In: International Conference on Systems, Man and Cybernetics (2000)

42. Lescisin, M., Mahmoud, Q.: Tools for Active and Passive Network Side-Channel
Detection for Web Applications. In: WOOT (2018)

43. Liang, B., You, W., Liu, L., Shi, W., Heiderich, M.: Scriptless Timing Attacks
on Web Browser Privacy. In: Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (2014)

44. Luckie, M., Beverly, R., Brinkmeyer, W., Claffy, K.: Speedtrap: Internet-Scale IPv6
Alias Resolution. In: IMC (2013)

45. Lyon, G.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security Scanning. Insecure (2009)

https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/rfc6888/
https://datatracker.ietf.org/doc/html/rfc9293

Zero-Click SnailLoad: From Minimal to No User Interaction 19

46. Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traffic analysis
of low-latency anonymous communication using throughput fingerprinting. In: CCS
(2011)

47. Msadek, N., Soua, R., Engel, T.: IoT device fingerprinting: Machine learning based
encrypted traffic analysis. In: Wireless Communications and Networking Confer-
ence (WCNC) (2019)

48. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: S&P (2005)
49. Open Graph: The Open Graph protocol (2025), https://ogp.me/
50. Panchenko, A., Lanze, F., Pennekamp, J., Engel, T., Zinnen, A., Henze, M., Wehrle,

K.: Website Fingerprinting at Internet Scale. In: NDSS (2016)
51. Panchenko, A., Niessen, L., Zinnen, A., Engel, T.: Website Fingerprinting in Onion

Routing Based Anonymization Networks. In: WPES (2011)
52. Rahman, M.S., Mathews, N., Wright, M.: Video Fingerprinting in Tor. In: CCS

(2019)
53. Rauscher, F., Kogler, A., Juffinger, J., Gruss, D.: IdleLeak: Exploiting Idle State

Side Effects for Information Leakage. In: NDSS (2024)
54. Reed, A., Kranch, M.: Identifying HTTPS-Protected Netflix Videos in Real-Time.

In: CODASPY (2017)
55. Reed, M., Syverson, P., Goldschlag, D.: Anonymous Connections and Onion Rout-

ing. Journal on Selected Areas in Communications 16(4), 482–494 (1998)
56. Rimmer, V., Preuveneers, D., Juarez, M., Van Goethem, T., Joosen, W.: Auto-

mated website fingerprinting through deep learning. In: NDSS (2017)
57. Schuster, R., Shmatikov, V., Tromer, E.: Beauty and the Burst: Remote Identifi-

cation of Encrypted Video Streams. In: USENIX Security (2017)
58. Shen, M., Gao, Z., Zhu, L., Xu, K.: Efficient fine-grained website fingerprinting

via encrypted traffic analysis with deep learning. In: International Symposium on
Quality of Service (IWQOS) (2021)

59. Shen, M., Ji, K., Gao, Z., Li, Q., Zhu, L., Xu, K.: Subverting Website Fingerprinting
Defenses with Robust Traffic Representation. In: USENIX Security (2023)

60. Shen, M., Liu, Y., Zhu, L., Du, X., Hu, J.: Fine-grained webpage fingerprinting
using only packet length information of encrypted traffic. TIFS 16, 2046–2059
(2020)

61. Shen, M., Wei, M., Zhu, L., Wang, M.: Classification of encrypted traffic with
second-order markov chains and application attribute bigrams. TIFS 12(8), 1830–
1843 (2017)

62. Shintre, S., Gligor, V., Barros, J.: Optimal strategies for side-channel leakage
in FCFS packet schedulers. In: International Symposium on Information Theory
(ISIT) (2015)

63. Singh, A., Nordström, O., Lu, C., Dos Santos, A.L.: Malicious ICMP tunneling:
Defense against the vulnerability. In: Australasian Conference on Information Se-
curity and Privacy (ACISP) (2003)

64. Sirinam, P., Imani, M., Juarez, M., Wright, M.: Deep Fingerprinting: Undermining
Website Fingerprinting Defenses with Deep Learning. In: CCS (2018)

65. Sirinam, P., Mathews, N., Rahman, M., Wright, M.: Triplet Fingerprinting: More
Practical and Portable Website Fingerprinting with N-shot Learning. In: CCS
(2019)

66. Skowron, M., Janicki, A., Mazurczyk, W.: Traffic fingerprinting attacks on internet
of things using machine learning. IEEE Access 8, 20386–20400 (2020)

67. Song, D.X., Wagner, D., Tian, X.: Timing Analysis of Keystrokes and Timing
Attacks on SSH. In: USENIX Security (2001)

https://ogp.me/

20 S. Gast et al.

68. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP Topologies with Rocketfuel.
In: SIGCOMM (2002)

69. Stivala, G., Pellegrino, G.: Deceptive Previews: A Study of the Link Preview Trust-
worthiness in Social Platforms. In: NDSS (2020)

70. Trampert, L., Schwarz, M.: Hidden in Plain Sight: Scriptless Microarchitectural
Attacks via TrueType Font Hinting. In: uASC (2025)

71. Trampert, L., Weber, D., Gerlach, L., Rossow, C., Schwarz, M.: Cascading Spy
Sheets: Exploiting the Complexity of Modern CSS for Email and Browser Finger-
printing. In: NDSS (2025)

72. Walsh, T., Thomas, T., Barton, A.: Exploring the Capabilities and Limitations of
Video Stream Fingerprinting. In: S&P Workshops (2024)

73. Wang, T., Cai, X., Nithyanand, R., Johnson, R., Goldberg, I.: Effective Attacks
and Provable Defenses for Website Fingerprinting. In: USENIX Security (2014)

74. Wang, T., Goldberg, I.: Improved Website Fingerprinting on Tor. In: WPES (2013)
75. Wang, X., Luo, J., Yang, M., Ling, Z.: A potential HTTP-based application-level

attack against Tor. Future Generation Computer Systems (2011)
76. White, A., Matthews, A., Snow, K., Monrose, F.: Phonotactic Reconstruction of

Encrypted VoIP Conversations: Hookt on Fon-iks. In: S&P (2011)
77. Wright, C., Bellard, L., Monrose, F., Masson, G.: Language Identification of En-

crypted VoIP Traffic: Alejandra y Roberto or Alice and Bob? In: USENIX Security
(2007)

78. Xue, D., Kallitsis, M., Houmansadr, A., Ensafi, R.: Fingerprinting Obfuscated
Proxy Traffic with Encapsulated TLS Handshakes. In: USENIX Security (2024)

79. Zalewski, M.: p0f v3 (3.09b) (2014), https://lcamtuf.coredump.cx/p0f3/
80. Zhu, Y., Graham, B., Bettati, R., Zhao, W.: Correlation-Based Traffic Analysis

Attacks on Anonymity Networks. IEEE Transactions on Parallel and Distributed
Systems (2010)

https://lcamtuf.coredump.cx/p0f3/

	Zero-Click SnailLoad:From Minimal to No User Interaction

